高级搜索 | 收藏本站 |网站地图 | RSS订阅|
logo
  主页 | 语文 | betway 客户端 | 英语 | 物理 | 化学 | 政治 | bet way官网 | 地理 | 生物
按教材浏览: 北师大版 各版通用 沪科版 华师大版 冀教版 鲁教版 其他版本 青岛版 苏科版 湘教版 新课标人教版 浙教版
最新资源
2024年冀教版八年数学下册教案(全册)
2024年人教版八年数学下册教案(全册)
2024年第18章 平行四边形教学设计
2024年第19章 一次函数教学设计
2024年八年级下册第20章 数据的分析教学设计
相关分类
初二数学教案
当前位置:主页>betway 客户端>初二数学教案>>>八年级数学上册全册教案详细

八年级数学上册全册教案

名称 八年级数学上册全册教案
类型 教案|教学设计
学科 数学
大小 0.86 MB
格式 doc
年级 初二|八年级
教材 新课标人教版
上传 admin 审核 admin
时间 2012-09-04 22:22
点击
评价 ☆☆☆☆☆
课题
11.1全等三角形
课型
新授课
教学目标
1.知道什么是全等形、全等三角形及全等三角形的对应元素;
2.知道全等三角形的性质,能用符号正确地表示两个三角形全等;
3.能熟练找出两个全等三角形的对应角、对应边.
教学重点
全等三角形的性质.
教学难点
找全等三角形的对应边、对应角.
教学过程
Ⅰ.提出问题,创设情境
1问题:你能发现这两个三角形有什么美妙的关系吗?
这两个三角形是完全重合的.
2.学生自己动手(同桌两名同学配合)
取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样.
3.获取概念
让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号.形状与大小都完全相同的两个图形就是全等形.
要是把两个图形放在一起,能够完全重合,就可以说明这两个图形的形状、大小相同.
概括全等形的准确定义:能够完全重合的两个图形叫做全等形.请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义.仔细阅读课本中“全等”符号表示的要求.
Ⅱ.导入新课
将△ABC沿直线BC平移得△DEF;将△ABC沿BC翻折180°得到△DBC;将△ABC旋转180°得△AED.
议一议:各图中的两个三角形全等吗?
不难得出:△ABC≌△DEF,△ABC≌△DBC,△ABC≌△AED.(注意强调书写时对应顶点字母写在对应的位置上)启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.
观察与思考:
寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?
(引导学生从全等三角形可以完全重合出发找等量关系)
得到全等三角形的性质:全等三角形的对应边相等. 全等三角形的对应角相等.
[例1]如图,△OCA≌△OBD,C和B,A和D是对应顶点,说出这两个三角形中相等的边和角.

问题:△OCA≌△OBD,说明这两个三角形可以重合,思考通过怎样变换可以使两三角形重合?
将△OCA翻折可以使△OCA与△OBD重合.因为C和B、A和D是对应顶点,所以C和B重合,A和D重合.
∠C=∠B;∠A=∠D;∠AOC=∠DOB.AC=DB;OA=OD;OC=OB.
总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法.
[例2]如图,已知△ABE≌△ACD,∠ADE=∠AED,∠B=∠C,指出其他的对应边和对应角.
分析:对应边和对应角只能从两个三角形中找,所以需将△ABE和△ACD从复杂的图形中分离出来.
根据位置元素来找:有相等元素,它们就是对应元素,然后再依据已知的对应元素找出其余的对应元素.常用方法有:
(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边.
(2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.
解:对应角为∠BAE和∠CAD.
对应边为AB与AC、AE与AD、BE与CD.
[例3]已知如图△ABC≌△ADE,试找出对应边、对应角.(由学生讨论完成)
借鉴例2的方法,可以发现∠A=∠A,在两个三角形中∠A的对边分别是BC和DE,所以BC和DE是一组对应边.而AB与AE显然不重合,所以AB与AD是一组对应边,剩下的AC与AE自然是一组对应边了.再根据对应边所对的角是对应角可得∠B与∠D是对应角,∠ACB与∠AED是对应角.所以说对应边为AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED.
做法二:沿A与BC、DE交点O的连线将△ABC翻折180°后,它正好和△ADE重合.这时就可找到对应边为:AB与AD、AC与AE、BC与DE.对应角为∠A与∠A、∠B与∠D、∠ACB与∠AED.
Ⅲ.课堂练习课本练习1.
Ⅳ.课时小结
通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用性质可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的.
找对应元素的常用方法有两种:
(一)从运动角度看
1.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.
2.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.
3.平移法:沿某一方向推移使两三角形重合来找对应元素.
(二)根据位置元素来推理
1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.
2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.
Ⅴ.作业
课本习题1
课后作业:《练习册》
 
板书设计
 
                              课题
           全等概念               例题1         例题2     

 
           全等的性质             练习
 
 
 
 
 
个人
修改
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
教后反思:
 
 
 
 
         
 
 
下载地址  ·进入下载地址列表 113227 帮助
本站所有资源永久免费下载,不用注册!点击顶部的教材,可以浏览相应教材的最新资源.点击上面"进入下载地址列表"链接,进入下载地址.
下载说明 ☉本站课件、试题、教案等免费下载。大多是rar压缩包,解压缩后是ppt、doc、swf、exe等
中“新课标人教版 初二|八年级 第一学期|上学期|上册 八年级数学上册全册教案 教案|教学设计”
中“八年级数学上册全册教案 教案|教学设计”
中“初二|八年级 八年级数学上册全册教案”
中“八年级数学上册全册教案”
上一篇:2012-2013年初二上册数学教学计划  
下一篇:第二章 特殊三角形教案
[收藏]   [推荐给好友]   [挑错]   关闭窗口↓
版权所有:必威体育下载 CopyRight 2005-2012 未经授权禁止复制或建立镜像
联系站长:邮箱